2022

MATHEMATICS — HONOURS

Paper : CC-2 Full Marks : 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Throughout the question the symbols \mathbb{N} , \mathbb{Z} denote respectively the set of natural numbers, set of integers. The other symbols have their usual meanings.

1.

		•						
	ose the correct fication:	alternative with proper just	ification, 1 mark for corn		for 10			
(a)	a) Number of equivalence relations on the set {1, 2, 3} is							
	(i) 2	(ii) 3	(iii) 4	(iv) 5.				
(b)	Let $f: \mathbb{Z} \to \mathbb{Z}^2$	$^+$, \mathbb{Z}^+ is the set of non-negat	ive integers, is defined by	$f(x) = \frac{1}{2}(x+ x)$, then				
	(i) f is injective but not surjective							
	(ii) f is not injective but surjective							
	(iii) f is injective and surjective							
	(iv) f is neither injective nor surjective.							
(c)	(c) The remainder when $6.7^{32} + 7.9^{45}$ is divided by 4 is							
	(i) 1	(ii) 2	(iii) 3	(iv) 4.				
(d)	(d) The principal value of $(-1)^i$ is							
	(i) e^{π}	(ii) $e^{-\pi}$	(iii) $e^{\pi/2}$	(iv) $e^{-\pi/2}$.				
(e) If $gcd(a, b) = p$, a prime number, then $gcd(a^{2023}, b)$ is								
	(i) <i>p</i>	(ii) p^{2023}	(iii) 2023p	(iv) p^2 .				
(f)	(f) If the roots of the equation $x^3 - 7x^2 + ax + 2023 = 0$ are integers, then the value of a is							
	(i) 1	(ii) 289	(iii) - 289	(iv) 119.				
(g) For positive real numbers a , b and c , the least value of $a^{-1} + b^{-1} + c^{-1}$ subject to the condition $a + b + c = 2023$ is								
	(i) $\frac{1}{2023}$	(ii) $\frac{9}{2023}$	(iii) $\frac{3}{2023}$	(iv) $\frac{2023}{9}$.				

X(1st	Sm.)-Mai	thematics-	H/CC-2	/CBCS

(2)

(h) The points z = x + iy on the Argand plane, satisfying $e^{iz} = -1$ lie

- (i) in an ellipse
- (ii) in a straight line
- (iii) in a circle
- (iv) in a parabola.

(i) The rank of the matrix $\begin{pmatrix} 1 & n \\ n & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ is

- (i) 1, for every n
- (ii) 2, for every n
- (iii) 2, except n = -1 (iv) 1, except n = -1.

(j) A particular solution of the difference equation $u_{x+2} + u_{x+1} + u_x = 2^x$ is

- (i) $\frac{2^x}{7}$
- (ii) $\frac{2^x}{2} + 4$
- (iii) $-\frac{2^x}{7}$ (iv) $\frac{2^x}{3}$.

2. Answer any four questions:

(a) Find the roots of the equation $z^n = (z+1)^n$, where n is a positive integer > 1. Show that the points which represent them in the z-plane are collinear. 3+2

(b) If a, b, c, d > 0 and a + b + c + d = 1, prove that

$$\frac{a}{1+b+c+d} + \frac{b}{1+a+c+d} + \frac{c}{1+a+b+d} + \frac{d}{1+a+b+c} \geqslant \frac{4}{7}.$$

- (c) If $\sin(\theta + i\varphi) = \tan \beta + i \sec \beta$, prove that $\cos 2\theta \cosh 2\varphi = 3$.
- (d) Use Sturm's function to show that roots of the equation $x^3 + 3x^2 3 = 0$ are real and distinct. 5
- (e) Find the values of k, for which the equation $x^4 + 4x^3 2x^2 12x = k$ has four real and unequal roots. 5
- (f) Solve the equation $x^4 + 11x^2 + 10x + 50 = 0$ by Ferrari's method. 5
- (g) Solve: $u_n = 7u_{n-1} 12u_{n-2} + 3^n$ given that $u_0 = 0$; $u_1 = 2$, $(n \in \mathbb{N})$. 5

3. Answer any four questions:

(a) P_1 be a relation defined on the set of integers \mathbb{Z} such that $P_1 = \{(x, y) | x, y \in \mathbb{Z}, x - y = 5n, n \in \mathbb{Z}\}$. Show that P_1 is an equivalence relation. If P_2 be another relation defined as

$$P_2 = \{(x, y) | x, y \in \mathbb{Z}, x - y = 3n, n \in \mathbb{Z} \}$$

show that the relation $P_1 \cup P_2$ is symmetric but not transitive

3+2

5

(b) If $f: A \to B$ be a mapping and P, Q are two non-empty subsets of A, then show that

$$f(P \cup Q) = f(P) \cup f(Q)$$
.

Give an example to show that $f(P \cap Q) \neq f(P) \cap f(Q)$.

3+2

- (c) (i) Consider the set $S = \{1, 2, 3, 4\}$ and the partition $\{\{1\}, \{2\}, \{3, 4\}\}\}$ of S. Find the equivalence relation corresponding to the above partition.
 - (ii) A function $f: z \to z$ is defined by

$$f(x) = \frac{x}{2}$$
, if x is even
= 7, if x is odd

Find a left inverse of f, if it exists.

3+2

- (d) If d is the gcd of two nonzero integers a and b, prove that there exist two integers u and v such that d = au + bv. Are u and v unique? Justify your answer. 3+2
- (e) Solve the system of linear congruences by Chinese remainder theorem : $x \equiv 1 \pmod{17}$, $x \equiv 1 \pmod{7}$, $x \equiv 4 \pmod{5}$.
- (f) If \leq be a relation defined on **N** by $a \leq b$ if and only if |a b| < 1, then prove that \leq is an equivalence relation. Is it a partial order relation? Justify your answer.
- (g) (i) Find the general solution, in positive integers, of the equation 12x 7y = 8.
 - (ii) Find the number of integers less than 900 and prime to 900.

4+1

4. Answer any one question:

5×1

(a) For what values of λ the following system of linear equations is solvable? Then solve it for those values of λ :

$$x + y + z = 2$$

 $2x + y + 3z = 1$
 $x + 3y + 2z = 5$
 $3x - 2y + z = k$

(b) Find the rank of the matrix A, where

$$A = \begin{pmatrix} 1 & 3 & 7 & 1 & 2 \\ 4 & 0 & 5 & 2 & 9 \\ 3 & 3 & 4 & 7 & 4 \\ 0 & 0 & 6 & 6 & -3 \end{pmatrix}$$

by reducing to its row-reduced echelon form.